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Abstract The exact solution for the Peierls-Heisenberg antifemmagnetic (AF) model in a finite 
duster is presented. The spin-spin coupling is retained up to second neighbours. The quantum 
mechanical character of the phonon variables is maintained in order to properly describe the 
fluctuations, which have a substantial role in one dimension. The problem of the hshated AF 
stale is briefly addressed. For the purpose of comparison, Born-Oppenheimer (BO) calculations 
are also provided. A noticeable result is the fact that the (semiclassical) BO approximation 
overehmres quantum fluctuations. 

1. Introduction 

The electron-phonon or spin-phonon (s-ph) interaction is usually studied using the adiabatic 
approximation [1-5]. Although this procedure seems suitable for high-dimensional systems, 
it is well known [&I21 that quantum fluctuations are important in a purely one-dimensional 
(ID) system. The non-adiabatic effects can reduce the Peierls distortion [7,8, lo]. In 
particular, for the case of ‘spinless’ electcons, Hirsch and Fradklin [7,8] have concluded 
that the long-range order of Peierls distortion can disappear when the ionic mass decreases 
below a critical value. This result is also relevant for the Peierls-Heisenberg model with first- 
neighbour exchange, which is fully equivalent to a ID system of interacting spinless fermions 
coupled to the lattice?. Therefore, the lattice quantum fluctuations are also very important 
in the Peierls-Heisenberg Hamiltonian; such non-adiabatic effects can be approximately 
accounted for by introducing a second-neighbour (frusmting) exchange [IO]. 

The Peierls-Heisenberg and the spin- f Peierls-Hubbard models are also equivalent when 
the Hubbard repulsion goes to infinity; this is valid for a half-filled [ 141 or quarter-filled [3] 
band. 

On the other hand, the spin-Peierls distortion (SPD) has been observed in several com- 
pounds, such as IITFcu-BDT [15], (2J-DCI-DCNQI)2-N(CH,)4 1161 and others I17.181. 

In the present paper we address the effect of quantum fluctuations in Peierls-Heisenberg 
systems by exactly solving four- and six-site clusters: the spin-: case is considered, first- 
and second-neighbour spin couplings are included. We retain the interaction between spins 
and phonons of period two; the quantum mechanical (QM) character of these phonons is 
preserved. The energy levels and eigenfunctions are obtained analytically, and several 
physical magnitudes are evaluated. Special emphasis is given to the lifetime 7 of the 
distorted state; the SPD is well defined only if 7 is much larger than the phonon vibration 

t This equivalence is proved via a Jordan-Wigner transformaIion; see for example [131. 
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period. In addition, the second-neighbour spin-spin correlation is used to identify an SPD. 
Finally, a brief discussion of SPD i n  a frustrated Heisenberg lattice is given. 

Another goal of the present work is to compare the exact QM results and the Born- 
Oppenheimer (BO) approximation; this comparison provides some surprises. Previous 
works [7-10] contrast the QM results with the 'adiabatic limit' M -+ 03, but they do 
not perform BO calculations. We remark that the Bo method goes beyond the adiabatic 
limit, since it restores a posteriori the QM character of the lattice degrees of freedom [19]. 

This paper is organized as follows. In section 2 the model is inhoduced, and the energy 
spectrum and associated eigenfunctions are obtained. Also, the adiabatic approximation is 
presented. In section 3 numerical results are shown and discussed. Finally, in section 4 the 
main conclusions are summarized. 

2. The model 

We consider a spin-; Peierls-Heisenberg ring with first-neighbour (51) and second- 
neighbour (52) antiferromagnetic (AF) couplings. We retain only the k = rr phonon. This 
choice is justified by the equivalences between the AF Heisenberg and two half-filled- 
band fermion Hamiltonians [13, IS]; in fact, a ID fermion system is unstable under 2kF 
distortions [20]; kF is the Fermi momentum. 

For a macroscopic crystal, the phonons lying in the neighbourhood of k = f r r  are 
important, since they describe short-range order effects; however, in our small clusters only 
a few values of k are allowed. The k = lr phonon is associated with a period two SPD; such 
distortion only affects the distance between first-neighbour spins; thus, only the interaction 
51 is coupled to the phonon fieldt. The Hamiltonian is 

where Hpi, = w ( u b  + 4) is the phonon Hamiltonian; ut creates a phonon with momentum 
k = A and frequency U. The spin contribution is 

where S, is the spin-; operator on site e ;  the prime indicates that the second sum takes 
into account each pair (8 ,  t + 2) only once. Finally 

where g is a suitable measure of the s-ph coupling, since it does not depend upon system 
size, N. 

t Note that spins are coupled to 'IongiNdinal phonons' in our model. In contrast, when spins couple to other 
lattice vibrations, like librons [Z]. he dimeriwtion may break down even in the adiabatk limit. 
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2.1. The spin Hamiltonian 

In the case of a four-atom cluster, Hs can be recast into the form 

Hs = (52 - Ji)[(S')'+ (S")' - 31 + Ji[(S)' - 31 

where S' = SI + S3, S" = SZ + 5'4 and S = S' + S" is the total spin operator, We note 
that ((S)', (S')', (S")2, S,) are compatible operators, with associated quantum numbers 
(S, S', S", m}; m is a degeneracy index. Since each individual spin has the value s = 4, 
the quantum numbers S' and S" can only attain the values (0, 1). 

On the other hand, this square-shaped cluster has the symmetry group C,, (we use 
the nomenclature of Tinkham [21]). Therefore, the eigenfunctions of Hs belong to the 
irreducible representations (IR) of C4". Table 1 enumerates the five energy levels of H6, 
including their degeneracy; the number of independent states is Z4 = 16. 

Table 1. The eigenenergies of Hs, their associated quanlum numben and degeneracy. 

S' S' S m Degeneracy Energy 

O O O A l I  -352 
0 1  

1 E 3 r 2 = 6  -Jz 
I O  

0 61 I J2 - 411 
I I I A 2 3  - 2.4 

2 61 5 h t 2 h  

According to table 1, the ground state (0s) of H, belongs to the S = 0 subspace. In 
the 51 > 52 0 case, the CS belongs to the B1 IR, while in the .I, > J1 > 0 case, the GS 
belongs to the A, IR. 

The B1 GS corresponds to two ferromagnetic interpenetrated lattices (S' = S" = I), 
which are coupled antiferromagnetically to each other (S = 0). Thus, the [BI, S = 01 IR con- 
tains second-neighbour ferromagnetic correlations (like a Ne4 state), SI . S3 = S,. Sa = i. 

On the other hand, the [A,, S = 01 IR corresponds to two uncoupled singlet states, 1-3 
and 2 4 .  In the case J I  = J2, the AF interaction is frustrated since then the cluster becomes 
tetrahedral. The effect of the s-ph interaction is not important for the IR with S z 0; thus, 
we shall only focus OUI attention on the spin-zero, AI and BI IR, both associated with 
the GS. Table 2 shows the explicit form of the eigenfunctions associated with the GS; the 
eigenstates of the spin operator S,, are represented by T L  (+$) and $1 (-$) respectively. 

Table 2. The S = 0 eigenfunctions of Hs 

Notation Eizenfunction 

In the case of a six-site ring, we perform a similar analysis; we first couple the spins 
SI t S3 + ss = S' and SZ + S4 + s6 = S", and then we couple S' and 6 to the total spin 
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Table 3. Sepantion of the Hilkrl space of a six-site ring in lerms of its IR. Ihe  sublattice and 
tom spin are also shown. 

S' S" S Irreducible representation 

4 4 0 A i t B i t E z  
! $ O A i  

4 f 1 A > + B z t E i  
f 3 I E i t E z  
f 1 I B z  

$ 2 EI t E z  
 AI 
8 8 3 B 2  

S, separating the diverse resulting states in the IR of the geometric goup Csv. The results 
are summarized in table 3. 

We have checked that the OS of the six-spin ring belongs to the bidimensional subspace 
[A,, S = OJ for the case 0 < 2J2 < Jl, or the onedimensional subspace PI, S = 01 for 
252 > J I  b 0. The s-ph interaction mixes these two IR subspaces. The OS is degenerate 
when Jl = 2.l~ > 0, this being the condition for fruseation of the AF interaction [22]. 

Table 4. The eigenfunclions assocised with the GS of Ihe six-ring expressed as ?sonant 
valenceponds; KI JiTs[TtSr - $lTzl[?r&r - $sTrl[tS$a - $ST$] p !$b34b56 and 
K z  = bnbr5661 are the traditional Kekuld bonding states, and Kd = bubzhe  represents 
bonding states along the diagonals of the hexagon. We remark thal [he states IAi, (f)', S = 0) 
andIAl,(t)Z.S=O)arecoupledby 4. 

2.2. The spin-phonon coupling 

The operator A defined in (3) belongs to the [BI. S = 01 IR of both C,, and C6" groups. 
Therefore HS+ mixes the IR [Aj , S = 01 and [BI, S = 01, which compete for the GS of 
both N = 4 and N = 6 rings. On the other hand, the phonon operators a and at, associated 
with the wavevector k = K, also belong to the [BI, S = 01 IR; accordingly, Hs-ph preserves 
the symmetiy of the composite system of spins and phonons. 

By using the results of tables 1-3 and analysing the effect of Ha+ over the base vectors, 
we obtain the mabicial expression for the Hamiltonian. In the case N = 4 

where the basis for the spin part is ordered as IAl), IBI); 5 = a+at is the position operator 
of the lattice; I is the identity mamx; C = - (2J l+J2) .  Finally, A E E A I - E B I  = 4(51-J~). 
Thus, only the exchange difference J1 - Jz is relevant in the case N = 4. 
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In the case N = 6 we define C = - 3 ( h  + Jz) and order the basis vectors as 
IAI, (4)’. S = O), IAI, ($1’. S = 0) and IB1, (i)z, S = 0). obtaining 

(5) 
0 

-2.71 
H = IC + d a t a  + j)]I + 

2.3. The adiabatic approximation 

In order to obtain general insight into the system behaviour, it is useful to consider the 
adiabatic limit, where the ionic mass goes to infinity, or equivalently, o --f 0. Noting that 
the phonon momentum is p = -i(a - at)/2, since it fulfills the canonical commutation 
rule [F, p ]  = i, we recast HPh into the form Hph = o(c2/4 + p 2 ) .  In the adiabatic limit, 
the kinetic energy of the lattice is disregarded, and we can replace Hph % &/4 in (1) .  
Thus, the quantum position operator 5 becomes a classical variable. Rescaling the position 
variable 6 + X 2g2 /No .  
Now the eigenenergies E., which depend parametrically on X. play the role of ‘effective’ 
(adiabatic) potentials for the ionic displacement, say E, = V,(X). For example, in the case 
N = 4 the adiabatic potentials are 

&/2, the Hamiltonian only depends upon J I ,  Jz, X and D 

V,,(X) = c + & xz f $ J z Z i F .  

Afterward, the ionic kinetic energy can be reinserted; the quantum status of the 
lattice displacements is then recovered in the context of the Born-Oppenheimer (BO) 
approximation. Introducing M = N / ( Z g 2 0 )  as an ionic mass, the BO Hamiltonian is 

To fix ideas, we return to the case N = 4. The adiabatic potential V(+)(X), associated 
with an excited state of  H,, has only one minimum located at X = 0. On the other hand, 
the GS adiabatic potential Vc-,(X) has two possible behaviours. (i) V,-,(X) has a maximum 
at X = 0, and two symmetrical minima at positions ~ X M ;  for 1x1 > XW the potential 
monotonically increases. In this case, a static distortion of the lattice is set up, giving rise 
to a spin-Peierls (SPD) phase. (ii) The potential V,- ) (X)  has a minimum at X = 0, increasing 
monotonically with 1x1. In this case the adiabatic potential always leads to a ‘softening. of 
the restoring force, but the system does not show SPD. 

From (6) it follows that D > DCr E lAl/24 is the adiabatic condition for stabilizing the 
SPD phase. The amplitude of the distortion is given by XM = J l 2 ( D Z  - 0;). 

We have also analysed the lowest adiabatic potential of the six-ring; assuming AF 
couplings (J1, Jz > 0), this potential can only exhibit the two former behaviours: either 
it has two symmetric minima separated by a central maximum, or else it has one central 
minimum. If we move in the parameter space, the adiabatic potential continuously modifies 
its shape, and the system goes from the undistoaed to the SPD state by suffering a second- 
order phase transition. This statement is hue for both the four- and six-spin rings. 

The last result, valid for AF couplings, contrasts with the ferrc-antifem Heisenberg 
model ( J 1  c 0; JZ > 0), where we have obtainedfirst-order Peierls transitions between AF 

states of a six-ring, the latter one under the condition that 0.554 605 . . . > Jz/ l  JI I > (the 
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last inequality assures that the GS is AF). The Hubbard model coupled with intramolecular 
phonons also exhibits first-order Peierls transitions [9.11, U]. 

Several calculations for the thermodynamic limit ( N  --t CO) suggest that the I D  
Heisenberg model is always dimerized, because the cs energy decreases with deformation 
as X4I3, dominating over the X 2  law of elastic energy [IO. 151. 

If we consider a large enough phonon frequency w, the adiabatic approximation is no 
longer reliable. In particular, if D > D,, but the phonon zero-point energy surpasses 
the adiabatic barrier, the SPD disappears, since then the lattice is not further trapped in a 
minimum of the adiabatic potential. 

For very large lattice distortions our model becomes meaningless; in fact, we have 
assumed that the exchange interaction between sites e and e+  1, say Jee+l, can be linearized 
with respect to lattice displacements; Jtt+l = JI - g(ut+l - u t ) :  here ut is the longitudinal 
movement of the e ion. Since we are considering phonons with wavenumber k = x .  it 
holds that ue = -(-1)'X/(2g), and Jtc+l = JI - X(-I)'. For t odd, Jtt+l decreases 
as X increases, vanishing as X attains the value X = JI = X-. A further increase 
in deformation X M  > X,, = 51 should lead to an unphysical situation [7], since then 
the absolute value of Jet+]  increases with the interionic separation. In order to exclude 
unphysical deformations, we impose 

D < D,, 7 

in the case N = 4. 

2.4. Evaluation of eigenfunctions 
In the case N = 4, the eigenfunctions lying in the GS subspace, [A], S = 01 fB [BI. S = 01 
have the form 

(8) 

where In) = -&at)"lO) and 10) is the phonon vacuum. The coefficients a;, and 0. 
are determined from the eigenvalue equation HIVE) = E [ * € ) .  Equation (4) yields the 
following tridiagonal system for the coefficients a.: 

m 

I ~ E )  = Z f i l a , I A ~ ,  S =O) +/LIBI. S = 0)lln) 
"=O 

where F, = E - 32 + 451 - w(n + 4). We note that each eigenfunction belongs to a fixed 
IR, say [BI, S = 01 or [AI,  S = 01. (i) If VE belongs to the IR [BI, S = 01, equation (9) has 
the solutions CY*+! = 0 = &r. The cs corresponds to fhis case, as can be seen by taking 
the limit g + 0. (ii) If VE belongs to the IR [AI, S = 01, then ab = 0 = &+I. 

The set {an] is obtained by solving Z, = an+&" from the tridiagonal system (9). 
In the n + 00 limit, the physical solution must satisfy &a,, + 0, or equivalently 
2. - 3(g/wn)'. By starting from a lirge enough n, and using the latter asymptotic relation, 
we obtain the Z. in a decreasing sequence. We also evaluate the Z. by starting from the left 
(n = 0 or n = 1) and compare both results at an intermediate value, n = L, thus obtaining 
the eigenenergy equation ZL (left) = Zr. (right). In order to overcome numerical difficulties, 
L is chosen by imposing the condition that both iterative procedures, Z,, + Zn*l, must be 
stable (their Lyapunov exponents must be negative, say). 

Once the set [CY"] has been evaluated for each eigenenergy, the eigenfunction (8) is 
obtained from the relations F.B. = -J?g[(n + I)an+l + a"-11. 

The eigenvalue problem for the case N = 6 also leads to a tridiagonal equation, which 
is treated in a similar way. 
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2.5. Characterization of the spin-Peierls distonion 

When an SPD is present, and therefore the adiabatic potential displays two minima, then one 
minimum corresponds to the ‘static’ configuration [l c) 2, 3 ++ 4, . . .] and the other one to 
[N ff I ,  2 ++ 3, ... 1. Due to QM effects, a tunnelling between these configurations exists. 
For a large ionic mass (or equivalently, small U )  the lower energy levels pair in narrow 
doublets. The tunnelling time between the two equivalent SPD is given by the inverse of 
the doublet width: 

Here { E j ,  j = 0, 1,2, . . .) are the eigenvalues of the Hamiltonian (4). If 7 is very large in 
comparison to the lattice vibration time, 7 >> 2n/w, the distortion can be characterized as 
‘static’; otherwise the concept of an SPD is somewhat blurred. 

3. Results 

In this section we show some numerical results. We use N = 4, 31 = 0.25 and 32 = 0 
unless otherwise specified. In fact, several conclusions are basically equivalent for the six- 
and four-spin clusters, but the latter case offers various closed expressions. 

3.1. The energy levels 

The adiabatic potential and exact eigenenergies for a distorted lattice (D = 0.08) are shown 
in figure I(a) and (b). The cases of relatively small (UJ = 0.05) and moderate (o = 0.15) 
frequencies are considered. The lower energy levels appear as very narrow doublets for 
UJ = 0.05; these doublets split for the larger frequency. 

-0.7 

V(X) 

-0.9 

1 .I 

-0.8 0.0 x 0.8 

x 0.4 -0.4 0.0 

n o  

-0.7 0.0 

Figure 1. The ground-gate adiabha*ic potential and lhe 
lower energy levels. The ring size is N = 4. except in Ihe 
right-hand side of (b), where N = 6. The paramelen are 
o = 0.05 in (a) and (c), and o = 0.15 in (b); D = 0.08 in 
(a) and (b) and D = D,, = 0.04 166, .  . in (e). The doublet 
width is shown in (a). 
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In addition, figure l(b) contrasts the adiabatic potentials and QM energy levels of a four- 
ring (left-hand side) and six-ring (right-hand side). In order to make a proper comparison 
of the two cases, we shift the energies in such a way as to make the adiabatic potential 
minima coincide, thus avoiding the effect of the superfluous additive constants. In spite of 
the fact that we are dealing with small rings, in which finite-size effects should be important, 
there is a relatively good accordance between the N = 4 and N = 6 cases. In particular, 
the shapes of the adiabatic potentials coincide fairly well, while the energy levels are also 
similar in both cases; for example, the zero-point energy EO - V(-)(XM) is 0.056 and 0.061 
for N = 4 and N = 6 respectively; however, the doublet width is slightly shorter in the 
latter case (0.01 1 and 0.0076 respectively), since then there is a higher adiabatic barrier 
(0.11 and 0.137 respectively). 

Figure I(c) shows the critical case, where the central barrier of V(-,(X) bas just 
disappeared; we use o = 0.05. It is apparent that the lower levels show strong anharmonic 
effects, departing from the equidistant sequence of the harmonic case. This anharmonic 
behaviour can be understood from the BO approximation, since [3*V(-)/3X2]~,0 = 0 (here 
the accuracy of BO goes beyond the figure resolution). 

Figure Z(a) shows (E, - Eo)/w against g / w  = for D = 0.06. In particular, 
(El - E O ) / @  nearly corresponds to the ratio between the vibration and tunnelling OS times; 
this ratio becomes very small for a highly dimerized system. The continuous curves are the 
exact QM results, while the dotted curves represent the BO calculations for b-)(X). This 
adiabatic potential is fixed (since D is also fixed), and has a central barrier. 

In the low-frequency regime, the barrier is nearly impenetrable, and the energy levels 
fuse in very narrow doublets; in addition, the QM and BO results virtually coincide, since the 
characteristic spin fluctuation time is very large in comparison with the vibration period. In 
the opposite limit of very large frequencies, the vibration amplitude is also large: therefore 
V<-)(X) can be approximated by the lattice contribution of (6). and the BO energy levels 
are roughly described by the relation Ej = w ( j  + $)+constant. On the other hand, the QM 
calculations closely follow the BO ones for low and moderate frequencies; in particular, the 
ermr in the GS doublet width is lower than 10% for w < 0.3, decreasing to 4% for w - D. 
An appreciable departure (over a 30% error) between BO and QM curves appears only for 
w > 4(51 - 52) = 1, since then the energy levels of V+)(X) overlap the upper adiabatic 
potential V(+)(X), thus causing strong non-adiabatic effects [12,24]. 

It is very noticeable that the QM curves lie below the BO ones, as the latter implies 
that the actual (QM) tunnelling time is larger than BO predictions, 2& > 'I& A siolilar 
result was previously reported for the Peierls-Hubbard model [12]. This behaviour seems 
rather counterintuitive, since one should hope that the semiclassical character of the BO 
approximation must inhibit typical QM effects, such as quantum tunnelling. 

Nevertheless, this surprising result can be understood in terms of a formalism [12, 241 in 
which the non-adiabatic effects are described by a gaugefield-like contribution. This non- 
adiabatic perturbation can be included approximately by modifying the adiabatic potential, 
V+,(X) -+ T-(X). The central barrier becomes reinforced in v-(X); accordingly, the 
tunnelling time incremes due to non-adiabatic effects. 

This modified potential gives a very good account of the true QM results; for example, 
when D = 0.06.0 = 0.05, the OS errors are -3 x for the Bo and 
modified potentials respectively; the departure from QM results has diminished by a factor 
of one hundred! The negative sign in the BO error is in accordance with the Bratwv 
theorem [SI, which states that BO provides a lower bound for the GS energy. In addition, 
and for the same parameter values, the GS doublet width is overestimated by 4% and 0.4% 
by the BO and modified adiabatic potential respectively. The inequality ?QM > '& can be 

and 3 x 
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traced back to the reinforcement of the central barrier in the corrected potential, and the 
fact that v-(X) closely reproduces the QM results. 

Figure 2. The excitation energies Ej - EO, for j = 1.2,3. The BO calculations are shown by 
dots. In (a) D = 0.06. In (b). o = 0.15 and a plot of -olog[(E, - Ei$/o] is also shown. 

A suitable measure of the degree of lattice dimerization is given by the rate (E2 - 
E , ) / ( E ,  - EO) = 7/‘&, where 7~ can be associated with the ‘corrected‘ lattice vibration 
time [12]. A remarkable result of figure 2(u) is the fact that the system is rather dimerized 
for relatively large frequencies o. For example, in the case o = 0.1 (where the ‘bare’ 
zero-point energy is larger than the barrier height, 0 / 2  > VM = 0.0336) the following 
holds: 7 / 7 v  M 3. In spite of this relatively large 7, the level El is not trapped by the 
central barrier (E1 > V(-)(X = 0), say); thus, the levels can pair in doublets, despite the 
fact that they eventually exceed the barrier top. To some extent this effect can be accounted 
for by the reinforcement of the central barrier of v-(X) due to non-adiabatic corrections. 

Figure 2(b) shows (Ej  - &)/o against g for a fixed frequency, o = 0.151 In contrast 
with figure 2(u), here V+)(X) changes i t s  shape with the S p h  coupling g (since D also 
changes). For a small g the adiabatic potential has a single minimum, and the lattice is 
undistorted; for a larger g two minima appear, separated by a central barrier which increases 
in size with g. The system develops an SPD when the GS becomes trapped by the barrier. 
As the barrier surpasses successive energy levels they fuse in doublets of decreasing width. 
Since V(-)(X) changes in shape as g increases, the doublet width shows a steeper narrowing 
in comparison to the case of figure 2(u). 

In agreement with figure 2(u), the QM calculations yield a narrower GS doublet as 
compared to the BO case. To show in more detail the highly distorted region, where the GS 
doublet becomes exceedingly narrow, figure 2(b) also displays -olog(El - EO); that plot 
shows that the BO approximation becomes less accurate as the s-ph coupling increases for 
a fixed o. The BO error is quadratic in g for small values of g, and linear for large values 
of this parameter. The error increases by over 10% when g surpasses o(= 0.15). 

From an analysis of the numerical results, we have concluded that, as o 4 0, 
the GS doublet width narrows according to E1 - EO - o e x p ( - X M , / m ) ,  where 
VM = V(-)(O) - V(-)(XM) is the height of the central barrier. 

Figure 3 shows a plot of the six QM lower energy levels of the IR BI in terms of the 
phonon frequency o. For small o, each level can be associated with a specific adiabatic 
potential, V(+)(X) or V(-)(X). However, when o increases, such association becomes 
blurred since the BO approximation becomes less accurate. In particular, when two BO levels 
associated with different adiabatic potentials cross each other, the non-adiabatic corrections 
become particularly important; these non-adiabatic effects produce a ‘repulsion’ between 
the energy levels, precluding the crossing, in accordance with Teller’s theorem. 
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Figure 3. "he six lower energies of the IR BI against o for 
D = 0.06. 

3.2. The lattice distortion 

Let us consider the probability P ( 0 ,  where $ = a  +at  = X/g is the lattice distortion. In 
the case of a dimerized lattice, P(C)  is a bimodal distribution with two symmetric maxima, &z, associated with the dimerization amplitude; otherwise, P ( 6 )  has a single maximum at 
C = 0. In the adiabatic limit r = 6;. The value of IC ($4) / [ (~2)]2 is associated with 
the shape of P ( 6 )  [11,12]. In fact, on using the harmonic approximation to describe the 
minima of the adiabatic potential, we have 

(5') = zz + (c4) = ? + 6Fz!$ + 3ti 
where 6~ represents the mean square deviation of P (#) around the maxima *$. When a 
net dimerization exists, >> 50 and IC = 1. In the opposite limit, where the quantum 
fluctuations of < greatly exceed the dimerization amplitude, F <( &,, then IC x 3; the 
tunnelling and vibration times are then comparable, and the notion of a dimerized state is 
no longer valid. 

Figure 410) shows a plot of IC against g f o r o  = 0.05. Since the frequency is relatively 
small, the Peierls transition is sharp; K falls abruptly from three (undistorted lattice) to 
unity (SPD state) when g slightly crosses the critical value (associated with D, = A/24), 
since then the V+,(X)  barrier appears, In contrast, for larger frequencies, the transition 
IC = 3 -+ 1 becomes broad; it roughly occurs when the barrier height surpasses the 'bare' 
zero-point energy 012. 

Figure 4. (a) The parameter li against 8 for o = 0.05. (b) The parameter h against g ,lo for 
D = 0.06. 

In figure 4(b) IC is plotted against g / w  for D = 0.06. Thus, the adiabatic potential is 
now fixed, having two lateral minima. Accordingly, the variation of K is less steep than in 
figure 4(u). In addition, figure 4(b) shows the dimerization amplitude g. For g/w + 0, the 
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frequency goes to infinity, and the lattice is undistorted, say K: - 3, while - 0. As g/o 
increases, w and the energy levels En decrease (see figure Z(a)). The intermediate value 
K: = 2 is nearly attained when the first excited level E ,  descends below thc barrier top, 
thus pairing in a doublet with the GS. The latter one occurs roughly when w is three times 
larger than the barrier height; in spite of this fairly high frequency, there is an important 
degree of dimerization, since then - 2.2. For a further decrease in w (right-hand side of 
figure 4(b)). the dimerization amplitude shows a steep increase, and K: + 1 .  

3.3. Spin-spin correlation 

Another measure of the degree of lattice dimerization is the second-neighbour spin-spin 
correlation 

This correlation attains its maximum value Cz = 1 if the GS corresponds to S' = S" = N / 2 ;  
S = 0 (for example, this is the case of a rigid four-ring and Jl z Jz > 0). On the other 
hand, for a fully dimerized lattice, where correlation between second-neighbour spins i s  
lost, it holds that C2 = 0. 

Since the total spin of the GS is zero, in the case of a four-ring the first- and second- 
neighbour spin-spin correlations are related by 

Figure 5 confirms this discussion; in fact, there is a strong ferromagnetic second- 
neighbour correlation (CZ - 1) for small and moderate values of g, in accordance 
with the antiferromagnetic (AF) character of the system. This correlation persists to 
D = 0, = 0.0415 ..., where CZ M 0.9. For D > D, the correlation C, shows a 
steep decrease as the SPD sets in, vanishing when D attains Dmm; thereupon the model 
lacks physical meaning. For D = Dmyr the system is fully dimerized. 

3.4. Frustrarion and the spin-Peierls distortion 

A cluster of four spins corresponds to a tetrahedron for J1 = Jz. The AF interaction is 
then frustrated in the triangular faces, and the IR AI and BI of C,, (associated with the 
GS) fuse in the bidimensional IR 'E' of Td (see [21]) .  In such a case the tunnelling time 
7 = 2ir/(Ef -Eo) becomes infinite due to degeneracy. In the Bo approximation, 7 remains 



4372 M Eigueta et a1 

50 
a 
? 
!i . 
3 

25 . 

Figure 6. The case of a six-ring. (Q) The phae diagram in the adiabatic limit. (6) A p l d  of 
- / (El  - Eo) against J z / J t  for 31 = 0.25, D = 0.01 667 and o = 0.05, 

finite (but very large) at J ,  = J i ;  in that case D, = 0, and the height of the adiabatic barrier 
is maximal. 

In the generic case of a 2N Heisenberg ring of spin-; with first- and second-neighbour 
interactions, the frustration condition for N > 2 is JZ = ~ J I  (see 122.261). In order to 
attain this general case of frustration, we have studied a six-site ring. The results are shown 
in figure 6. 

Figure 6(u) shows the phase diagram for the adiabatic limit. The upper-right part 
of the plane corresponds to the region of unphysically large distortions. The SPD phase 
occurs when the system parameters lie in the region 11, while the undistorted phase 
corresponds to region III. In this way, for fixed our finite ring displays an SPD 
on increasing D;  nevertheless, at the frustration condition Jz / J I  = f a vanishing value of 
D icenough to yietda distortedstate. This behaviour is due to the fact that a frustrated state 
Corresponds to a maximum of the spin energy, as the condition of AF correlations cannot 
be fulfilled for all neighbours; the latter one under the proviso that the lattice topology is 
unchanged. However, the system can depart (to some extent) from the frustration condition 
by means of dimerization, thus lowering its internal energy, even for a negligible s-ph 
coupling. In addition, the frustrated state is degenerate, and each wavefunction corresponds 
to neighbouring spins paired in singlets, thus producing a fully dimerized lattice [22]; 
therefore, the Peierls state can be assimilated to a Jahn-Teller distortion, in which the lattice 
accommodates to the (low-symmetry) spin wavefunction, regardless of the magnitude of the 
s-ph coupling. 

Figure 6(b) shows o / ( E I  - EO) - ?/& against Jz /JI for JI = 0.25, D = 0.01 667 
and w = 0.05; this corresponds to a horizontal line in the phase diagram of figure 6(a). 
The exact solution is represented by the full curve, while the dotted and broken curves 
correspond to the BO and modified-BO calculations respectively (the latter associated with 
the potential v-(X)). Figures 6(u)-and ( b )  are in good accordance, as the tunnelling time is 
appreciably larger than IV only in the distorted (11) region. This figure confirms that SPD is 
strongly enhanced by frustration, as the tunnelling time goes to infinity in the neighbourhood 
of the ‘static’ frustration condition, J1 = 2Jz. 

We define the ‘dynamical’ frustration condition by imposing 7 = 00, or equivalently 
a degenerate GS (for example, the lower energies of the IR A I ,  S = 0 and B1, S = 0 must 
coincide). According to our exact (QM) calculations, frustration occurs at Jz/Jl  F3 0.49 968 
for the parameters of figure 6(b); for the same value of D and w = 0.15, frustration occurs 
at Jz/JI  % 0.49912 yielding a deviation nearly linear in w. 

The BO calculation always leads to a finite tunnelling time, although a prominent peak 
appears at the frustration condition (note that vertical axis must be magnified by a factor 
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of IOOO). On the other hand, the modified-BO calculation yields an infinite 7 when the 
frustration condition is fulfilled; this result occurs because the two lower adiabatic potentials 
intersect at X = 0, and therefore the non-adiabatic correction diverges at this point [12]. 
Thus the BO approximation is not too accurate in the neighbourhood of frustration; the 
modified-BO and the exact results are in good accordance, except in a narrow vicinity 
around the frustration point. 

4. Summary and conclusion 

The effect of lattice dynamics on a Peierls-Heisenberg system was studied by analysing 
rings of four and six spins. Exact quantum mechanical (QM) and Born-Oppenheimer 
(BO) calculations were carried out; a modified version of the BO approach [I21 was also 
tested. The exchange spin-spin interaction was retained up to second neighbours. Only one 
vibrational degree of freedom was kept: that with wavevector k = n. 

In general terms we have concluded that, for a large enough s-ph coupling g, the 
reciprocal influences between the spin and lattice degrees of freedom can be considerable. 
In fact, on comparing with an uncoupled system, a great distortion appears in the phonon 
levels, together with a substantial change in the spin-spin correlations. Our main results 
are outlined in what follows. 

(i) For a small phonon frequency (where Bo is suitable), our finite clusters exhibit a spin- 
Peierls distortion (SPD) if the s-ph coupling exceeds a critical value. For a four-spin ring 
this condition is D > D,, = 151 - 521/6. Figure 6(a) shows Dm for the six-spin ring. If 
D z D,, the lower adiabatic potential V,_ , (X)  has two minima, and each minimum can be 
associated with one particular static SPD (say, [ 1 ff 2, 3 cf 4, . . .I or [N cf 1, 2 + 3, ...I). 

(ii) In the case of a non-vanishing frequency, QM effects produce a tunnelling between 
the two SPD states in a characteristic time I, which decreases as w increases. If 7 is large, 
the system behaviour is basically equivalent to a static distortion. But if 7 is comparable to 
the lattice vibration time, the image of an SPD state becomes blurred. In the low-frequency 
limit, 7 increases exponentially with l /wz .  The amplitude of an SPD also decreases as w 
increases. 

In analogy with conventional Peierls distortion [6] ,  it is plausible that the tunnelling 
time becomes infinite for N -+ 00 and zero temperature. But for non-zero temperature 
the coherence length of SPD is finite, and therefore tunnelling must exist, even in the 
thermodynamic limit. 

(ii) A small central barrier in the adiabatic potential may be enough to stabilize an 
SPD. In other words, relatively high frequencies are compatible with SPD; for example, for 
o w ~ V M .  tunnelling times as large as 5.5 lattice vibrations appear. 

(iv) In the AF Peierls-Heisenberg model only second-orderphase transitions are allowed, 
as the lower adiabatic potential V(+(X) has only one minimum at X = 0, or else two 
symmetric minima at X = &XM, separated by a central barrier. In contrast, in the 
(frustrated) case of fe-tiferro couplings, first-order Peierls transitions are possible. 

(v) The SPD state is strongly enhanced in the neighbourhood of the frustrated regime. 
When the frustration condition is fulfilled a ‘static’ dimerizarion appears (7 = 00). 

In the case of a four-spin ring, the frustration condition is J1 = J2, regardless of the 
value of s-ph coupling or phonon frequency. But in the more generic case of a six-spin 
ring, the ‘static’ frustration condition (51 = 252) is slightly modified for a non-vanishing 
o (e.g., for a frequency as large as w = 0.651 and D = 0.06751, the departure from this 
condition is lower than 0.2%). 
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(vi) B o  calculations give a small error, even for relatively high frequencies; this is 
particularly true for the ground state. But BO fails when two levels associated with different 
adiabatic potentials nearly coincide, or else for unphysically large frequencies. We remark 
that the present work goes beyond a mere freezing of lattice coordinates at the minima 
of the adiabatic potential as we are performing a Born-Oppenheimer calculation, which 
reintroduces a posteriori the QM status of lattice variables [19]. 

Nevertheless, BO overestimates the tunnelling effect, giving a shorter tunnelling time 
than actual QM results, 50 < %M. where 7 is the lifetime of a static SPD. The latter result 
is very surprising, as tunnelling is a typical QM effect; nevertheless, it can be understood in 
terms of some ‘non-adiabatic gauge field’ [12,24], which reinforces the central barrier of 
the BO potential. 
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